Polynomial Identities and Noncommutative Versal Torsors

نویسندگان

  • ELI ALJADEFF
  • CHRISTIAN KASSEL
چکیده

To any cleft Hopf Galois object, i.e., any algebra H obtained from a Hopf algebra H by twisting its multiplication with a two-cocycle α, we attach two “universal algebras” AH and U α H . The algebra A α H is obtained by twisting the multiplication of H with the most general two-cocycle σ formally cohomologous to α. The cocycle σ takes values in the field of rational functions on H. By construction, AH is a cleft H-Galois extension of a “big” commutative algebra B H . Any “form” of H can be obtained from AH by a specialization of B H and vice versa. If the algebra H is simple, then AH is an Azumaya algebra with center B H . The algebra U α H is constructed using a general theory of polynomial identities that we set up for arbitrary comodule algebras; it is the universal comodule algebra in which all comodule algebra identities of H are satisfied. We construct an embedding of U H into A α H ; this embedding maps the center Z H of U α H into B α H when the algebra H is simple. In this case, under an additional assumption, AH ∼= B H ⊗Zα H U α H , thus turning AH into a central localization of U α H . We completely work out these constructions in the case of the four-dimensional Sweedler algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Hopf Galois extensions

In previous joint work with Eli Aljadeff we attached a generic Hopf Galois extension A H to each twisted algebra H obtained from a Hopf algebra H by twisting its product with the help of a cocycle α. The algebra A H is a flat deformation of H over a “big” central subalgebra B H and can be viewed as the noncommutative analogue of a versal torsor in the sense of Serre. After surveying the results...

متن کامل

Quantum Torsors with Fewer Axioms

We give a definition of a noncommutative torsor by a subset of the axioms previously given by Grunspan. We show that noncommutative torsors are an equivalent description of Hopf-Galois objects (without specifying the Hopf algebra). In particular, this shows that the endomorphism θ featuring in Grunspan’s definition is redundant.

متن کامل

Special Identities for Quasi-jordan Algebras

Semispecial quasi-Jordan algebras (also called Jordan dialgebras) are defined by the polynomial identities a(bc) = a(cb), (ba)a = (ba)a, (b, a, c) = 2(b, a, c)a. These identities are satisfied by the product ab = a a b + b ` a in an associative dialgebra. We use computer algebra to show that every identity for this product in degree ≤ 7 is a consequence of the three identities in degree ≤ 4, bu...

متن کامل

Noncommutative Symmetric Functions and the Inversion Problem

Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...

متن کامل

Noncommutative Symmtric Functions and the Inversion Problem

Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008